

Software Requirements Specification (SRS)
x-Browser

Team: Team 3
Authors: Andrew Rivard, Cassandra Harkins, Jacky McGrath, Pooja Patel, Tzur Almog
Customer: Front-End Developers
Instructor: Professor James Daly

Table of Contents

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

1

Introduction 1
Purpose 2
Scope 2
Definitions, Acronyms, and Abbreviations 2
Organization 3

Overall Description 4
Product Perspective 4
Product Functions 5
User Characteristics 7
Constraints 8
Assumptions and Dependencies 8
Apportioning of Requirements 8

Specific Requirements 9

Modeling Requirements 10

Prototype 26
How to Run Prototype 26
Sample Scenarios 27

References 30

Point of Contact 30

1 Introduction

x-Browser is a front-end development tool that combines a rich text editor with
autocomplete functionality for real-time testing utilizing multiple browsers. This document is
meant to outline the core functionality and requirements needed to be met by this project’s

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

2

completion. High-level terminology and diagrams are used to describe the system both
technically and visually for a better view of the full scope of requirements. A prototype of the
final design is also included to provide a better understanding of what the final product is
intended to look like and how it functions.

1.1 Purpose

The purpose of this document is to provide more detailed information about x-Browser,
including functionality and requirements for the finished product. This document is intended for
use by the developers and any interested parties that wish to know more about the specific details
and the requirements required for the completed x-Browser.

1.2 Scope

x-Browser is a combination of a text editor and a browser preview of the code written in
the text editor. The user will be able to create or open a file containing HTML, JavaScript, or
CSS and edit the contents within. After saving the file(s), the preview windows of different
browsers will automatically show the result of the written code along with any console output
within those browsers.

This project will benefit front-end developers who want to see how their written code
displays in different browsers without having to open up a new instance for each in separate
applications. x-Browser shows both the written code as well as multiple browser views of that
code side-by-side making a convenient testing tool for developers who want to have a more
convenient way of testing and checking how their code displays and interacts with different
browsers.

The ultimate goal of x-Browser is to create a platform that combines a text editor with the
functionality of browser previews for ease of use and more optimized and convenient testing of
front-end code. The intended application domain is for front-end development so that developers
will be able to easily write and test their code.

1.3 Definitions, Acronyms, and Abbreviations
● Application: A program designed to fulfil a purpose, such as x-Browser
● Browser: A computer program with a GUI for displaying and navigating web pages
● Build / Buildable: The process of converting source code files into software that can be run

on a computer
● Google Chrome: Browser application

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

3

● Microsoft Edge: Browser application
● Firefox: Browser application
● Safari: Browser application
● Console: Text output device for system messages
● Cascading Style Sheet (CSS): Front-end programming language
● Hypertext Markup Language (HTML): Front-end programming language
● JavaScript: Front-end programming language
● Developers: The intended users of x-Browser who will use the product for front-end

development
● Directories: Folders that contain files or other folders. The parent directory contains all the

other folders and/or files being worked on
● Front-end development: The process of converting data to a graphical user interface for

users to view and interact with data. Front-end developers typically utilize CSS, HTML, and
JavaScript to create a visually pleasing and easy-to-use user interface

● Graphical User Interface (GUI) / User Interface (UI): Visuals that allow the user to
interact with x-Browser

● Kivy: A Python framework used in the creation of x-Browser
● macOS / Windows: Operating Systems that support computer’s basic functions
● Preview: A visual representation of what the user’s written code will look like
● Program: The current project code the the user is working on
● Project: Used to reference the x-Browser development project as well as a collection of files

that can be worked on by the user: typically a directory
● Python: A programming language used in the creation of x-Browser
● Render: Generating a new view shown to the user based on updated input
● Screen / Window / Panel: A visual partitioned area within an application. Can be the full

application view or separate partitions within it depending on the context
● Terminal: Interface to the console that will type and execute text-based commands
● Terms of Service (ToS): Legal agreements for use of a service that must be abided by when

using that service
● Text editor: Program that allows the user to edit text
● Toggle: The action of switching between multiple states
● Web pages: A hypertext document on the Wold Wide Web
1.4 Organization

The rest of the document is as follows:
● Section 2: Covers how x-Browser should look and behave to the user including

functionality, characteristics, constraints, and assumptions about the usage of x-Browser
● Section 3: An enumerated list of requirements needed for the x-Browser completed

product
● Section 4: Descriptions of various included diagrams which include a use case diagram,

a class diagram, multiple sequence diagrams, and a state diagram.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

4

● Section 5: A description and visuals of the working prototype created for the concept of
x-Browser along with instructions on how to run it

● Section 6: A list of all references used in the creation of this document and the creation
of x-Browser

● Section 7: Contact information for any further questions or inquiries

2 Overall Description

In this section, the information covered will be related to what x-Browser should look
and behave like. Interface descriptions, as well as constraints related to using the product will be
discussed. Who can use x-Browser and why are key points in the section. Our goal in creating x-
Browser was to create a user friendly application that is accessible, attractive, and safe.

2.1 Product Perspective

x-Browser is built to efficiently show the user a preview of their code on an assortment of
browsers and is intended for front-end development. When the user starts up x-Browser, they

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

5

will have the option to choose to open a new file or an existing project. When the file or project
loads, the user can see the project on the left with a preview of a browser on the right. The user
has an option to toggle between a preview and edit mode for different views of the code and
browser previews. When they click on preview mode, a temporary file will be saved of the code
after a successful build. The preview will be of this temporary file in order to make sure the
preview is buildable and viewable. x-Browser is compatible with the operating systems of both
Windows and macOS. It requires storage in the form of directories to save temporary files for the
purpose of previewing, as well as the storage required for the application itself. A large enough
monitor is required to be able to view both the editable code and the tabs of preview browsers. A
console view is also available for developer use in order to test the preview functions. Figure 1
shows the larger system that x-Browser will fit into.

Figure 1: Bigger System

2.2 Product Functions
In order to function efficiently and effectively, x-Browser consists of several core

functionalities that are performed when the application is used.
File:
● Create New File: Creation of a new file to edit. The file is created in a specific directory

created for the new project.
● Edit Existing File: Open an existing file to preview or continue editing.
● Edit Mode: Edit the open file in the text editor panel.
● Preview Mode: View what the current file looks like on several tabbable browsers. File

requires a successful build in order to view previews.
● Save: Save the file to its current location.

Display:

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

6

● Launch Screen: Shows Application Logo as well as Edit Existing File or Open New File
options.

● Toggle Mode: Shows the Browsers in a grid layout, or the Edit Mode in a toggle fashion.
● Toggle Console: Opens a Console to interact with the previewed browsers.
● Tabs: Tabs in the Edit Mode reveal the previews in different Browsers for quicker

viewing.
● Exit: Exits the application.

 The function diagram is shown below in Figure 2, which shows the listed core
functionalities that x-Browser will utilize and how they interact with each other.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

7

Figure 2: Function Diagram

2.3 User Characteristics

A user of x-Browser is expected to want to see their code side-by-side with a preview of
that code being displayed in a browser. Typically this would be a front-end developer such as
someone who works with GUI development. The user should also have knowledge on how to
write buildable code that can be viewed within browsers. Users should also be able to operate a

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

8

mouse and a keyboard in order to move around the program and edit code within it given the
visual application and no auditory descriptions.

2.4 Constraints

x-Browser is only designed to compile/interpret HTML, JavaScript, and CSS, to preview
code on Chrome, Microsoft Edge, Firefox, and Safari browsers, and to run on Windows and
MacOS operating systems. This means that any other languages, browsers, or operating systems
may be incompatible with x-Browser.

In order to download the application, the user needs to have around 500mb available on
the computer that is downloading x-Browser.

x-Browser does not have any support for people with disabilities at the moment, and
requires a keyboard and mouse to function correctly.

2.5 Assumptions and Dependencies

Assumptions for x-Browser use would be that the computer being used to run x-Browser
is able to support and have the resources needed for any language the user plans to use with x-
Browser. The user should have an Internet connection in order to download Python and Kivy,
which are necessary for running the application.

Dependencies for x-Browser use include the user having Python and Kivy installed,
which download instructions are listed in section 5.4. The user must also have the browsers that
they wish to view their code in already installed onto the computer running the x-Browser
application.

2.6 Apportioning of Requirements

Currently x-Browser is only created to fulfil the purpose of creating an editor with real-
time display of code in multiple browsers within the editor itself. Because of this there are some
aspects that may not be covered in the current version, such as:
● Support for languages other than HTMl, CSS, and JavaScript
● Support for browsers other than Google Chrome, Firefox, Safari, and Microsoft Edge
● Support for Operating Systems other than Windows and macOS

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

9

● More views of the browser apart from page layout, page functionality, and browser
console information

3 Specific Requirements

1. Program must be able to parse HTML, CSS, and JavaScript in a code editor
1.1. The editor will alert the user if the code cannot compile/be interpreted or there are

obvious errors within the user’s code
1.2. Must be able to switch editing files
1.3. The user can write into the file displayed in the editor

2. Program must be able to display one or more browsers at a time
2.1. The browser window will update when the user saves their code and display a

notification when the user has unsaved changes

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

10

2.1.1. There is an option to preview current code without saving it
2.2. If the browser cannot display the code saved, there should be an error shown to

the user in the browser window
2.3. Supported browsers are Firefox, Google Chrome, Safari, and Microsoft Edge

2.3.1. Program must abide by the Terms of Service for each browser supported
3. There are two display options the user can toggle between while editing

3.1. User can toggle between the two display options in either mode
3.2. In both modes, the user can see the console of the browser(s) shown
3.3. A preview mode that uses the whole window to display multiple browser screens

3.3.1. User can split the window into a four-quadrant setup that allows the
browsers to be placed on the left/right and top/bottom in a
single/double/quadruple sized quadrant

3.4. An editor mode that splits the window between an editor screen and a display
screen

3.4.1. The code and browser screens will be displayed on a split-screen vertically
so one shows up on the left and the other on the right

3.4.1.1. The two screens locations on left and right are interchangeable
3.4.2. Collapsible hierarchical display of the project files next to the code editor
3.4.3. The display screen will only show one browser

3.4.3.1. The browser window can be changed to the view of a different
browser

4. Program must be compatible with both Windows and macOS systems
4.1. Program must work as expected on both systems

4 Modeling Requirements

This x-Browser use case diagram is used to show the typical user experience with the
application. The user has the ability to toggle between edit and preview mode, view and/or edit
code, view browser, and utilize the browser’s console. The diagram is shown below in Figure 3
and the following tables describe each use case within it.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

11

Figure 3: Use Case Diagram

Use Case Name: Toggle Edit/Preview mode

Actors: User

Description: User can switch between edit mode and preview mode

Type: Primary, Essential

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

12

Includes: View/Edit code, View browser(s)

Extends: N/A

Cross-refs: Requirement 3

Uses cases: None

Use Case Name: View/Edit code

Actors: User

Description: User can view and edit code within edit mode

Type: Primary, Essential

Includes: View browser(s)

Extends: Check if code compiles, Check for potential code errors

Cross-refs: Requirement 1

Uses cases: Toggle Edit/Preview mode

Use Case Name: View browser console

Actors: User

Description: User can view the output of the browsers displayed

Type: Primary, Essential

Includes: Display console log, Update browser view

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

13

Extends: N/A

Cross-refs: Requirement 3.2

Uses cases: None

Use Case Name: View browser(s)

Actors: User

Description: User can see all of the browsers updated by the currently open project

Type: Primary, Essential

Includes: N/A

Extends: Check if code is being displayed in browser, or if there are any errors
when doing so, Check for browser support

Cross-refs: Requirement 2

Uses cases: Toggle Edit/Preview mode

Use Case Name: Check if code compiles

Actors: None

Description: Once the code is saved, the compiler checks to make sure the resulting
program is executable or not

Type: Secondary, Essential

Includes: N/A

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

14

Extends: N/A

Cross-refs: Requirement 1.1

Uses cases: View/Edit code

Use Case Name: Check for potential code errors

Actors: None

Description: While typing, the program checks for any potential errors the user is
making that may prevent successful compilation

Type: Secondary

Includes: N/A

Extends: N/A

Cross-refs: Requirement 1.1

Uses cases: View/Edit code

Use Case Name: Display console log

Actors: None

Description: Displays all of the browsers’ console logs to the user

Type: Secondary, Essential

Includes: N/A

Extends: N/A

Cross-refs: Requirement 3.2

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

15

Uses cases: View browser console

Use Case Name: Update browser view

Actors: None

Description: Renders all of the browser displays with the current project’s code

Type: Secondary, Essential

Includes: N/A

Extends: N/A

Cross-refs: Requirement 2.1

Uses cases: View browser console

Use Case Name: Check if code displays

Actors: None

Description: Checks to make sure the code is being displayed in the browser or if there
are any errors preventing it from loading fully

Type: Secondary

Includes: N/A

Extends: N/A

Cross-refs: Requirement 1.1

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

16

Uses cases: View browser(s)

Use Case Name: Check for browser support

Actors: None

Description: Checks for any lines of code that are incompatible with the browser it is
trying to be displayed on

Type: Secondary

Includes: N/A

Extends: N/A

Cross-refs: Requirement 2.3

Uses cases: View browser(s)

This x-Browser state diagram shown in Figure 4 describes the expected states of the

software. The states focus on allowing the user easy navigation between the different windows
for the easiest possible web development workflow.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

17

Figure 4: State Diagram

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

18

This x-Browser class diagram shown in Figure 5 describes the object oriented framework
for our project. It shows the hierarchical structure of controllers from top to bottom.

Figure 5: Class Diagram

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

19

Element Name Description

System Controller / Home screen Is the home page. Opens the user into a
project

Attributes:

Operations: createNewProject(file: File):
void

Creates a new file to begin a new
project of the user

Element Name Description

Display Manager The display manager controls the
window the project is on. It also has the
controls to switch between the Editor and
Browser List.

Attributes:

Operations: changeView(): void Changes view between Editor and
Browser List

updatePreview(): void Refreshes web pages based on the open
files

toggleConsole(): void Displays and hides the console

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

20

Element Name Description

Browser List Shows multiple browsers. Allows the
user to see differences in changes by
measuring the websites side by side.

Attributes: selectBrowsers: list<Browser>:
void

A list of browsers that the program
can display

Operations: loadBrowsers(files:list<File>): void Loads all browsers available given
files

addBrowser(browser:string): void Adds a new browser view

removeBrowser(browser: string):
void

Removes a browser from the list

editBrowser(browser: string): void Edit a browser view

selectBrowser(): list<Browser> Selects the browser that the user
wants to view when there can only be
a limited number of browsers on the
screen

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

21

Element Name Description

Editor The text editor that the user can read and
write in files within a project

Attributes: displayFile: File The file that is being displayed to the
user to work on at the moment

allFiles: list<File> List of files that are active

active: File The file is actively being worked on at
the moment

Operations: setActive(file:File): void Sets the file to be active

saveAll(files:allFiles): void Saves all files that are active

saveFile(file:displayFile): void Saves the file that is being displayed

open(location: string): void Opens a path to a new file to be worked
on

close(id: int): void Closes a file that was being worked on

checkForBrowser(browser:
string): boolean

Checks if the code written is compatible
with a given browser and returns if yes
or not

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

22

Element Name Description

Browser The browsers available to view the
written code in

Attributes: name: string Name of the browser

console_log: File The console log of the browser

preview: File The preview file of what would be
seen on the browser

Operations: loadConsole(console_log:file): void Load the console log given in the
browser

loadPreview(preview:file): void Load the preview of the browser
with the open file(s)

Element Name Description

Consoles All of the browser console logs when
the code is saved or previewed

Attributes: browserConsoles:
 list<console_log>

List of available browser console
outputs

Operations: initList(Browsers: Browsers): void Initialize the list of browser consoles

getLog(Browser: console_log):
console_log:file

Get the log of each browser console

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

23

Element Name Description

File Files included in the project the user has
open

Attributes: location: string Location of the file

type: string Type of file

Operations: add(pos: int, data: string): void Adds a file to the program to edit

remove(from: int, to: int): void Removes a file from the program

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

24

The sequence diagram shown in Figure 6 shows the scenario of when the user wants to
create a new project. They need to supply a name and a location of which a directory is made as
well as the project is opened. This then requires the user to select what browsers to open for
testing.

Figure 6: Sequence Diagram 1

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

25

The sequence diagram shown in Figure 7 shows the scenario of when the user has a

project open and now wants to make a change that will update the browser view to reflect that
change. They will then switch to preview mode to view all browsers side-by-side, and then save
the changes to the file.

Figure 7: Sequence Diagram 2

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

26

5 Prototype
The prototype for x-Browser shows basic UI components and how the user should

interact with the system. In future prototype implementations, we will demo more of the core
functionality of the system (editor, browser rendering, etc.) This prototype keeps basic user
interaction in mind, focusing on simplicity to navigate so that the users can focus more on
getting work done. It consists of 2 workflows: editor mode and preview mode. Preview mode has
viewable windows for each browser currently opened (in the form of a screenshot for UI
prototype purposes). Editor mode has a panel on the left to show files in the project directory,
text editor on the left half of the window, and a browser preview on the right side. This browser
preview shows only one browser at a time, but the user can choose what browser is currently
showing. In both modes, there is a collapsible panel at the bottom that will show the consoles for
all open browsers.

5.1 How to Run Prototype
To Run from Source Code:

1) Ensure you have python3 downloaded:
a) type ‘python3 --version’ or ‘python --version’ in terminal. It should reply with a

version number 3..
b) if you get an error or don’t have version 3+ follow these instructions

i) Install Python: https://realpython.com/installing-python
ii) NOTE: We encountered issues when using a python version newer than

3.7
2) Download Kivy (dependency for this prototype) :

a) Windows Installation: https://kivy.org/doc/stable/installation/installation-
windows.html

b) OS X Installation: https://kivy.org/doc/stable/installation/installation-osx.html
c) Linux Installation: https://kivy.org/doc/stable/installation/installation-linux.html

3) Run the program:
a) Download the source code here
b) https://github.com/jackyyym/x-browser
c) Open the downloaded directory in terminal
d) run ‘python3 xbrowser.py’

4) Exit the program:
a) Simply close the window

Downloading Windows Executable:

1) Download the latest version from https://github.com/jackyyym/x-browser/releases
2) Unzip the archive file and run XBrowser.exe - Shortcut

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

27

5.2 Sample Scenarios
 A web developer is tasked with a job to make a simple webpage. From the menu page,
the developer selects ‘Open New File’; this launches the editor mode. From there, the developer
can resize each individual panel to their liking. Once the developer sets up their environment
how they want it, they begin typing code into the editor. If they want to see changes rendered
without saving the ‘Refresh’ button will do that. In our case, the developer wants to save the file
and preview changes, so they press the ‘Save’ button. After viewing the changes on Safari, they
decide to check how the website looks on Firefox. The developer wants a side by side view of
each browser, so they press the ‘Toggle Mode’ button to enter preview mode. From here the
developer notices that each browser rendered the webpage differently and can act accordingly.

The Developer opens xBrowser and selects ‘Open New File’

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

28

The editor is launched and the developer makes the text editor larger

Text is entered and the developer clicks ‘Save’. The preview to the right then loads. After that, the developer
switches to the Firefox tab

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

29

To view all browsers, the developer presses the ‘Toggle Mode’ button and resizes the console to be smaller.

Template based on IEEE Std 830-1998 for SRS. Modifications
(content and ordering of information)

Revised: 10/24/2019 4:57 PM

30

6 References
[1] A. Almanhady, D. Faubel, A. Witt, V. Gordiyevsky, “Software Requirements

(SRS) Number Pop” (2019)
[2] A. Rivard, C. Harkins, J. McGrath, P. Patel, T. Almog, “x-Browser-site,”

Available at: https://jackyyym.github.io/x-browser-site, GitHub, (2020)

[3] A. Rivard, C. Harkins, J. McGrath, P. Patel, T. Almog, “x-Browser,” Available at:
https://github.com/jackyyym/x-browser, GitHub, (2020)

[4] A. Santos, D. Amos, D. Bader, J. Anderson, J. Jablonski, J. Mertz, J. Schmitt, J.
Sturtz, M. Driscoll“Python3 Installation & Setup Guide,” Available at:
https://realpython.com/installing-python, Real Python, (2020)

[5] D. Allen, B. Bean, N. Mezher, J. Summers, R. Terravecchia, “Software
Requirements (SRS) Tap Tap Computation,” (2019)

[6] “Kivy Download” Available at: https://kivy.org/#download, Kivy (2019)

[7] M. Batbouta, L. Byan, J. Dom, M. Santana, “Software Requirements
Specification (SRS) Project: ArithMagic”

7 Point of Contact

For further information regarding this document and project, please contact Prof. Daly at
University of Massachusetts Lowell (james_daly at uml.edu). All materials in this document
have been sanitized for proprietary data. The students and the instructor gratefully acknowledge
the participation of our industrial collaborators.

